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Abstract

This paper is concerned with determination of the acoustic pressure field in a centrifugal pump. The main noise-

generating mechanism is assumed to be the unsteady impeller blade surface forces, which reach a maximum when the

flow channel between two consecutive blades is shut off by the volute tongue. The acoustic sources are moving

(rotating) dipoles. The strengths of these dipoles are estimated by using the discrete vortex method described in Part I of

this two-part study, but may be determined by any other (appropriate) flow analysis method. The solution to the

inhomogeneous wave equation which describes the generation and propagation of pressure waves is expressed in the

frequency domain, by making use of Fourier transform. The dipole-type boundary term, which accounts for the

scattering from the volute, is discretized by employing the boundary element method. The emphasis is on a two-

dimensional procedure, but extension to three dimensions is also discussed. The method is applied to the flat ‘two-

dimensional’ laboratory centrifugal pump considered in Part I. The frequency-domain solution is particularly useful for

this kind of problem, as the interest typically is in the dominating frequency components only, which are the blade

passage frequency fblade and its higher harmonics, 2fblade; 3fblade; etc. The numerical results are compared with available
experimental results, by which they are well supported. The frequency-domain solution is also found to be very useful in

connection with minimization of the flow-noise by design optimization.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Centrifugal pumps are widely used for transporting fluids though pipe systems, not only in industrial environ-

ments but also in home and office appliances, such as heating and cooling systems, water supply, etc. It is

thus important that the fluid transport is accompanied with as little noise as possible. Flow-induced noise in a

centrifugal pump is mainly generated by blade–tongue interaction (Chu et al., 1995; Dong et al., 1997). When a couple

of impeller blades pass by the tongue, the fluid channel between them is gradually blocked, resulting in generation of a

pressure pulse. These pulses are transmitted throughout the pipe system as sound waves. As these waves are subject to

very little frictional attenuation, they may cause annoying noise and vibrations far away from the source (Lighthill,

1978).

For flows characterized by a small Mach number,

M ¼
Characteristic flow speed

Speed of sound
¼

U

c0
; ð1Þ
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the generation and propagation of sound waves in a fluid may be represented by an inhomogeneous wave equation on

the form

q2p
qt2

� c20r
2p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

propagation

¼ c20sðx; tÞ|fflfflfflffl{zfflfflfflffl}
source

; ð2Þ

where pðx; tÞ is the fluid pressure at position x ¼ ðx1; x2Þ (or ðx1; x2; x3Þ in three dimensions) and at time t; c0 is the speed

of sound,r2 is the Laplacian, and the source term sðx; tÞ is a sound-generating forcing function which may be written as

sðx; tÞ ¼
qQ

qt
�

qFi

qxi

�
q2Tij

qxiqxj

ð3Þ
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Nomenclature

c0 speed of sound

cðxÞ geometric coefficient, defined by (11)

dj design parameters

f frequency

fblade blade passage frequency, ONblades=2p
f rotating point force

F dipole forcing term

F volute design curve (B-spline)

G Green’s function

H Heaviside function, HðxÞ ¼ 1 for x > 0 and 0 for xo0
Hð1Þ

n Hankel function of first kind and order n
i Complex unit,

ffiffiffiffiffiffiffi
�1

p
I Unit matrix

J number of sampled force/pressure values, see (26), (27)

Jn Bessel function of first kind and order n
k acoustic wavenumber, o=c0
n, n normal vector

Nblades number of impeller blades

Ne number of boundary elements

Nf number of rotating forces

Nnodes number of nodes in each boundary element

p acoustic pressure

p0 reference pressure

q0 vector of rotating dipoles (frequency domain)

r distance from source located at y to point of observation x

RT impeller outer radius

S0 element matrix, see (30)

t time

U characteristic flow speed

UT rotor peripheral velocity, RTO
x point of observation

y source location

Yn Bessel function of second kind and order n

Greek symbols

d Dirac delta function,
R
N

�N
dðxÞ dx ¼ 1; dðxÞ ¼ 0 for xa0

r0 fluid density

t source time parameter

fn boundary element shape function

o radian frequency, 2pf

O angular velocity
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(Howe, 1998), where summation over repeated indices is to be applied. The scalar function Q represents simple sources,

the vector function Fi represents unsteady pressure forces, and the tensor function Tij represents a stress distribution

due to turbulent velocity- and pressure-fluctuations. The terms correspond, from left to right, to monopole, dipole, and

quadrupole sources, respectively. The monopole is the most efficient source, generating pressure pulsations

proportional to U2 in the three-dimensional far field. The dipole generates pressure pulsations proportional to U3;
while those generated from the quadrupole are proportional to U4: The acoustic power generated is thus proportional
to U4 for the monopole, U6 for the dipole, and U8 for the quadrupole (Guelich and Bolleter, 1992). In a two-

dimensional model, as considered in this paper, the pressures are proportional to U3=2; U5=2; and U7=2; respectively,
giving acoustic powers proportional to U3; U5; and U7 (Guo, 2000).

Monopole sources may exist in a centrifugal pump in form of nonuniform outflow from the impeller, and in the form

of flow and stagnation pressure oscillations at the pump discharge. But these are normally weak in a well-designed

pump. Dipole sources exist in the form of fluctuating pressure forces on both rotating and stationary parts. These may

be of significant magnitude, especially for pumps with high hydrodynamic efficiencies. Quadrupole sources are found in

the unsteady, highly turbulent wake flow. Ffowcs Williams and Hawkings (1969a) analyzed the balance between dipole

and quadrupole contributions to the total sound generation by multi-bladed fans rotating in a free field, and showed

that the quadrupole contribution may be comparable with the dipole contribution if the fan has very many blades

rotating near sonic speed ðME1:0Þ: But for a typical centrifugal pump, with 5–10 blades running atME0:01 (which is a
typical value), the noise contribution from quadrupoles can safely be neglected (Howe, 1991).

A second dipole-type sound source in turbomachines is the ‘chopping’ of vortices when they are squeezed in between

the volute tongue and the trailing edges of the impeller blades, and then cut by the blades. If UT is the peripheral

impeller blade velocity and rv is the radius of a vortex core, the characteristic frequency of the vortex chopping noise is

approximately UT=rv (Howe, 1991). This is much higher than the characteristic frequency of the oscillating surface

forces, which are the blade passage frequency, fblade ¼ UT Nblades=ð2pRT Þ; and its harmonics, 2fblade; 3fblade; y; where
Nblades is the number of impeller blades and RT is the impeller radius. Experiments show that the dominating pressure

signals in centrifugal pumps are at the blade passage frequency and the first 4–5 harmonics (Guelich and Bolleter, 1992;

Chu et al., 1995; Rzentkowski, 1996; Dong et al., 1997). Vortex chopping noise is therefore ignored in the present paper.

The discrete vortex method is applied to give the unsteady velocity field, as described in Part I (Langthjem and

Olhoff, 2003). Once the velocities are known, the forces exerted on the impeller blades are evaluated from the unsteady

Bernoulli equation. In the present approach the distributed blade forces are ‘lumped’ into point forces, acting at

specified control points. The sound generation in a fluid by direct excitation of a fluctuating point force was discussed

by Lighthill (1952). That paper was mainly concerned with the noise generation by turbulent fluid motion, and laid the

foundation to aeroacoustics. The influence of solid boundaries was investigated by Curle (1955). Point forces in

rectilinear motion was discussed by Lighthill (1962). Lowson (1965) developed the theory for point forces in arbitrary,

subsonic motion. These results were extended to surfaces moving with arbitrary velocities by Ffowcs Williams and

Hawkings (1969b). Their general result, the so-called Ffowcs Williams and Hawkings (FW–H) equation, has been

successful in predicting the noise generated by the blades of rotating machinery, such as helicopter rotors, see Farassat

and Brentner (1998).

The foundation work cited above was formulated for three-dimensional problems. Only recently, the FW–H

equation was reformulated in a two-dimensional setting. This was done simultaneously but independently by Lockard

(2000) and by Guo (2000). Their work is discussed further in Section 7.

The ‘lumping’ of the distributed, unsteady surface pressure fluctuations into a number of fluctuating point forces can

be thought of as a simple discretization of the FW–H equation. This formulation was chosen for its simplicity. Jeon and

Lee (1999) used the discrete vortex method (in two-dimensional formulation, as used in the present paper) to evaluate

the unsteady flow generated by a centrifugal fan rotating in the vicinity of a wedge. Following this, the acoustic pressure

fluctuations were evaluated by using Lowson’s result (in three-dimensional formulation) and ignoring the scattering by

the wedge. Scattering from a closed casing was considered in Jeon and Lee (2000).

The theory described in this paper is kept in a two-dimensional formulation throughout. This is done in order to

include the scattering effects of the pump casing in the simplest way. Applying the theory to a basically two-dimensional

laboratory pump, such as the one used by Chu et al. (1995), the essential features of the noise generation within the

pump will likely be captured, although the amplitude of the sound waves may be overestimated. However, the necessary

modifications to extend the analysis to three dimensions are also discussed.

The paper is organized as follows. Section 2 describes assumptions regarding the mathematical model, the governing,

inhomogeneous wave equation, and its solution in integral representation. The discretization of this equation is

described in Section 3. Section 4 is concerning with some relative simple test problems, used to verify individual parts of

the numerical scheme. In Section 5, calculations of the acoustic pressure in a centrifugal pump are presented and

compared with experimental results. Section 6 discusses use of the developed analysis method in connection with
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minimization of the flow-induced noise by shape-optimization of the tongue. The conclusions are summarized in

Section 7.

2. The sound field

2.1. Description of the mathematical model

Consider the ‘two-dimensional’ laboratory pump sketched in Fig. 1(a). To estimate the noise generated by the flow in

the pump, the following assumptions are made.

(i) The rotational Mach number Mr ¼ UT=c051: As an example, an impeller with diameter 25 cm running in water

at 1000 r:p:m: has MrE0:01; assuming that the speed of sound c0 ¼ 1400 m s�1:
(ii) Monopole sources (due to nonuniform outflow from the impeller) and quadrupole sources (due to turbulent

velocity and pressure fluctuations) are much weaker than the dipole sources (due to surface pressure fluctuations),

and can be neglected.

(iii) Both the incompressible ‘background’ flow field and the acoustic field are two-dimensional.

(iv) Acoustic pressure fluctuations do not have significant influence (back-reaction) on the ‘background’ flow.

(v) The pump casing (volute) and the exit channel are completely rigid.

The noise sources are assumed, then, to be the unsteady, rotating fluid forces acting on the impeller blades, as sketched

in Fig. 1(b). These forces are, for the time being, assumed known. [They are specified later, by (14).] Thus the acoustic

pressure pðx; tÞ at the observation point x ¼ ðx1; x2Þ can be obtained from the linear wave equation with a sound-

generating dipole-type forcing term included on the right-hand side, as follows:

q2p
qt2

� c20r
2p ¼ F ðx; tÞ; ð4Þ

where the dipole term F is given by

F ðx; tÞ ¼ �c20

XNblades

j¼1

= . fFðyjðtÞ; tÞdðx� yjðtÞÞg: ð5Þ

Here = . is the divergence operator (see also (3)),

FðyjðtÞ; tÞ ¼ ðF1ðyjðtÞ; tÞ;F2ðyjðtÞ; tÞÞ

are fluid forces per unit volume acting on the rotating impeller blades, d is the Dirac delta function, and

yjðtÞ ¼ ðy1ðtÞ; y2ðtÞÞj ¼ jyj jðcosðOtÞ;�sinðOtÞÞ ð6Þ
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Fig. 1. (a) Schematic of a volute-type centrifugal pump, (b) acoustic model.

M.A. Langthjem, N. Olhoff / Journal of Fluids and Structures 19 (2004) 369–386372



are points on the impeller blade surfaces at time t; presuming that the impeller rotates in the clockwise direction. The
somewhat lengthy notation is employed to emphasize that the forces are not stationary in space, but rotate with the

angular velocity O: The influence of viscosity on the pressure waves is known to be insignificant (Lighthill, 1978) and is
also ignored here.

With the assumption of a completely rigid pump casing and exit channel (see Fig. 2), the boundary condition to be

satisfied everywhere on the surface is

qp

qn
¼ 0; ð7Þ

where q=qn symbolizes the derivative in the direction of the normal vector n which points into the enclosure.

Considering each impeller blade as a closed surface, the same boundary condition applies to these moving boundaries

since, again, the influence of the mean flow on the acoustic pressure can be ignored. But the impeller blades will not be

represented by moving surfaces. They will, ultimately, be represented just by a number of moving line forces. It may

seem, then, that the impeller blades will be transparent to the acoustic pressure waves. It will be shown later in this

section, however, that (7) is satisfied on the impeller blades exactly at the positions where the line forces attack. This is

analogous to the flow analysis (Part I), where the impeller blades are represented by just a number of line vortices, and

where the boundary condition of zero normal velocity is satisfied only at control points slightly off-set from the line

vortices. In the numerical analysis the impeller blades then satisfy (7) just as ‘well’ as the casing, since this condition

cannot be enforced numerically everywhere on the casing boundary, but only at a limited number of control points (see

Section 3.2).

2.2. Solution of the inhomogeneous wave equation

In order to solve Eq. (4) (with (7) imposed) we consider the wave equation

q2G
qt2

� c20r
2G ¼ dðx� yÞdðt � tÞ; ð8Þ

where y ¼ ðy1; y2Þ are source coordinates, and t a source time coordinate. The right-hand side represents an impulsive
point source placed at y and working only at time t ¼ t: The two-dimensional, free-space Green function G satisfying

this equation, and having outgoing wave behavior, is given by (Howe, 1998)

Gðx; y; t; tÞ ¼
Hðc0ðt � tÞ � rÞ

2pc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20ðt � tÞ2 � r2

q : ð9Þ

Here HðsÞ is the Heaviside function, which takes the value 1 for s > 0 and 0 for so0; and r ¼ jx� yj: Considering the
denominator of (9), it is seen that G represents an outgoing cylindrical wave with a slowly decaying ‘tail’. This is

different from the three-dimensional case, where the corresponding Green’s function is an impulsive, outgoing wave

(without any tail).

By using (8), the solution to (4) is obtained as

cðxÞpðx; tÞ ¼
Z
t

Z
y

c20fFG þ ðGr2p � pr2GÞg d2y dt; ð10Þ
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Fig. 2. Complete acoustic computational model, illustrating the distribution of boundary elements.
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where the integration is performed over the entire source plane (‘pump area’) y (�Noy1; y2oN) and over all source

times t (�NotoN). The coefficient

cðxÞ ¼

1 if x is in the interior of the acoustic medium;

1

2
if x is on the boundary;

0 if x is outside the acoustic medium:

8>>><
>>>: ð11Þ

In three dimensions, cðxÞ represents the solid angle of the bounding surface, seen from the point x: This is 4p away from
the boundary and 2p on the boundary, provided that there is a unique tangent plane there, and zero inside the bounding
surface. The result (11), sometimes referred to as Green’s 3rd identity (Hansen, 1991), also holds in two dimensions;

here the angle is 2p away from the boundary and p on the boundary. In this way the factor 1
2
appears. A mathematical

proof of (11) can be found in, e.g., Chen and Zhou (1992).

Considering the first term in (10), the divergence operator can, by integration by parts, be transferred to the Green

function G; as follows:

�
XNblades

j¼1

Z
t

Z
y

c20r 
 fFðyjðtÞ; tÞdðx� yjðtÞÞgG d2y dt

¼
XNblades

j¼1

Z
t

Z
y

c20fFðyjðtÞ; tÞdðx� yjðtÞÞg 

qG

qy
d2y dt; ð12Þ

where qG=qy ¼ ðqG=qy1; qG=qy2Þ: The boundary terms vanish as there are no dipoles placed at y1; y2 ¼ 7N: Carrying
out the integration over y1and y2 (i.e., over all blade surfaces), (12) reduces toXNf

n¼1

Z
t

c20fnðynðtÞ; tÞ 

qG

qy
dt; ð13Þ

where fn are ‘lumped’ line forces (force per unit breadth) which act on the impeller blade control points ynðtÞ (as
specified in Part I, Fig. 3). These forces are obtained as

fnðynðtÞ; tÞ ¼ nnðynðtÞÞDpncn; n ¼ 1; 2;y;Nf ; Nf ¼ NbvNblades: ð14Þ

Here Nbv is the number of bound vortices on each impeller blade, nnðynðtÞÞ is the normal vector at ynðtÞ; Dpn is the

hydrodynamic pressure difference across blade control point n (obtained from an incompressible flow analysis, see Part

I, Eq. (16)), and cn is the length of vortex panel n:
Green’s theorem gives the second and third terms in (10) as

c20

Z
t

Z
y

fGr2p � pr2Gg d2y dt ¼ c20

Z
t

I
s

ps
qG

qn
� G

qps

qn

� �
ds dt; ð15Þ

where
H

s
ds refers to integration around the closed boundary curve, and ps is the pressure acting on the boundary. The

boundary condition (7) gives that the second term is equal to zero.

In order to bring the formal solution (10) into a form suitable for numerical evaluation, it is most convenient to

express the Green function (9) in terms of its Fourier transform, given by (Howe, 1998)

Gðx; y; t; tÞ ¼
i

8pc20

Z
o
H

ð1Þ
0 ðkrðtÞÞe�ioteiot do; ð16Þ

where H
ð1Þ
0 is the Hankel function of first kind and zeroth order (Abramowitz and Stegun, 1972), rðtÞ ¼ jx� yðtÞj; o is

the frequency parameter, k ¼ o=c0 is the wavenumber, and i ¼
ffiffiffiffiffiffiffi
�1

p
: The Hankel function Hð1Þ

0 represents an outgoing

cylindrical wave, as may been seen by considering its approximation for large arguments (see (22) in the next

subsection).

Eq. (10) can now be written as

cðxÞpðx; tÞ ¼
XNf

n¼1

Z
t

fnðynðtÞ; tÞ
q
qy



i

8p

Z
o
H

ð1Þ
0 ðkrnðtÞÞe�iot eiot do

� �
dt

þ
Z
t

I
s

pðys; tÞ
q
qn

i

8p

Z
o
H

ð1Þ
0 ðkrsÞe�iot eiot do

� �
ds dt; ð17Þ

where ys denotes coordinates along the boundary.
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By defining the Fourier transform of the pressure as

pðx;oÞ ¼
Z

t

pðx; tÞeiot dt; pðx; tÞ ¼
1

2p

Z
o

pðx;oÞe�iot do; ð18Þ

Eq. (17) can be expressed in the frequency domain as

cðxÞpðx;oÞ ¼
i

4

XNf

n¼1

Z
t

fnðynðtÞ; tÞ 

q
qy
H

ð1Þ
0 ðkrnðtÞÞeiot dt

þ
i

4

Z
t

I
s

pðys; tÞ
q
qn
H

ð1Þ
0 ðkrsÞeiot ds dt: ð19Þ

Using (18) again, the second (boundary) term can be written as

i

4

I
s

pðys;oÞ
q
qn
H

ð1Þ
0 ðkjrsÞ ds: ð20Þ

It is noticed that the two terms in (19) have the same form. In particular, the directions of the line forces fn are normal

to the impeller blades and thus, qHð1Þ
0 =qy in the first line could just as well be written as qHð1Þ

0 =qn: This means that the
boundary condition (7) is satisfied at the positions where the rotating point forces attack, as mentioned earlier.

Furthermore, (19) shows that the influence from the casing also corresponds to a distribution of dipoles, a continuous

distribution rather than a number of concentrated ones, as for the impeller blades. But by discretization of the second

term in (19) (for numerical analysis, see Section 3.2), the continuous dipole distribution on the casing will, in a way, be

‘lumped’ into discrete dipoles. At that stage the two terms in (19) become equivalent. [Change of the solution (19) to one

valid in three dimensions is described in Appendix A.]

Finally, it is useful to list in this Section the derivatives of the Hankel function; these are given by

q
qya

H
ð1Þ
0 ðkjrnðtÞÞ ¼ kjH

ð1Þ
1 ðkjrnðtÞÞ

xa � yanðtÞ
rnðtÞ

;

q
qn
H

ð1Þ
0 ðkjrsÞ ¼ kjH

ð1Þ
1 ðkjrsÞ

ðx� ysÞ 
 n
rs

; ð21Þ

since qHð1Þ
n =qz ¼ �Hð1Þ

nþ1ðzÞ þ nHð1Þ
n ðzÞ=z and qr=qya ¼ �ðxa � yaÞ=r: These results explicitly display the characteristic

dipole directivity. Consider, for example, a harmonically oscillating line force f ¼ ðf ðoÞ; 0Þ acting at y ¼ ð0; 0Þ in the x1
direction, in a free field. Putting x1 ¼ r cos y the resulting pressure (19) is equal to p ¼ i

4
fkH

ð1Þ
1 ðkrÞ cosðyÞ: At large

distances from the force the acoustic particle radial velocity ur ¼ p=r0c0: The acoustic intensity, defined as I ¼ pur

(Lighthill, 1978), then takes the value I ¼ �ffkH
ð1Þ
1 ðkrÞg2 cos2ðyÞ=16r0c0: The factor cos

2ðyÞ gives the well-known figure
of eight-shaped directivity.

2.3. Sound pressure far away from the pump

In the ‘near field’, very near the noise sources themselves, kr51; and kH
ð1Þ
1 ðkrÞB� i=ð2prÞ: Eq. (19) then shows that

pðx;oÞBU2; since fnðynðtÞ; tÞ and pðys; tÞ are proportional to U2; according to the Bernoulli equation. In contrast, in the
‘far field’, where the point of observation x is far away from the noise sources, jxjbjyj and krb1: Then

H
ð1Þ
1 ðkrÞB� i

ffiffiffiffiffiffiffiffi
2

pkr

r
eiðkr�p=4Þ; rBjxj �

x 
 y
jxj

and
1

r
B
1

jxj
: ð22Þ

Inserting (21) and (22) into (19) gives

cðxÞpðx;oÞB
XNf

n¼1

Z
t

k
x

jxj

 fnðynðtÞ; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8pikjxj

s
eioteikjxje�ikx
ynðtÞ=jxj dt

þ
I

s

k
x

jxj

 n pðys;oÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8pikjxj

s
eikjxje�ikx
ys=jxj ds; ð23Þ
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which by ignoring the now small changes in the force positions ynðtÞ (as seen from x) may be further simplified to

cðxÞpðx;oÞB
XNf

n¼1

k
x

jxj

 fnðy0;oÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8pikjxj

s
eikjxje�ikx
y0=jxj

þ
I

s

k
x

jxj

 npðys;oÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8pikjxj

s
eikjxje�ikx
ys=jxj ds; ð24Þ

assuming that ynðtÞEy0; the ‘mean position’ of all Nf forces. The terms fnðy0;oÞ and pðys;oÞ are still proportional to
U2; while purely complex terms (with phase angle 90� ahead of displacements) are proportional to U : It then follows
from (24) that

pðx; tÞBU5=2 ð25Þ

as also showed by Guo (2000).

3. Discretization

3.1. Discrete Fourier transform

In correspondence with (18) the discrete Fourier transform of the pressure is defined by

pðx;ojÞ ¼
XJ�1
k¼0

pðx; tkÞeioj tk ; pðx; tkÞ ¼
1

J

XJ�1
j¼0

pðx;ojÞe�ioj tk : ð26Þ

The discrete version of (19) then takes the form

cðxÞpðx;ojÞ ¼
i

4

XJ�1
k¼0

XNf

n¼1

fnðynðtkÞ; tkÞ 

q
qy
H

ð1Þ
0 ðkjrnðtkÞÞeioj tk

þ
i

4

I
s

pðys;ojÞ
q
qn
H

ð1Þ
0 ðkjrsÞ ds; j ¼ 0; 1; 2;y; J � 1: ð27Þ

In order to make the frequency composants more ‘sharp’, the first term is multiplied by a modified Hann window

function (Press et al., 1992), similar to the one suggested by Lockard (2000). The window function is a Hann window at

the first and last 18 parts, and a square window at the middle
3
4 part.

Eq. (27) is particularly useful for numerical evaluation if the interest is only in a few frequency components of the

pressure, for example, the blade passage frequency fblade and a number of the higher harmonics, 2fblade; 3fblade;y; say.
This is the typical situation in connection with centrifugal pumps.

3.2. Discretization of the boundary integral

The boundary integral in (27) is evaluated numerically by using the boundary element method (BEM) (Crighton et al.,

1992). The boundary is discretized into Ne elements. Within each element, the pressure is represented by

pðyeÞ ¼
XNnodes

n¼1

fnðyeÞp
n
e ; ð28Þ

where Nnodes is the number of nodes in each elements, and fn are shape functions. In two-dimensional analyses, one,

two, or three nodes are typically used, corresponding to constant pressure, linear varying pressure, and quadratic

varying pressure, respectively, within each element. Using (28), the boundary integral is approximated byI
s

pðysÞ
q
qn
H

ð1Þ
0 ðkjrsÞ dsE

XNe

e¼1

XNnodes

n¼1

pn
e

Z
se

fnðyeÞ
q
qn
H

ð1Þ
0 ðkjðreÞÞ dse; ð29Þ

where re is the distance from nodal point e to the observation point x: Using (27) and (29) the pressure is evaluated at
each element nodal point in turn. This gives a set of linear equations with the same number of unknown nodal

pressures. The equation system can be written as

½12I� S0ps ¼ q0; ð30Þ
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where I is the unit matrix. The element Sij in the matrix S0 is the scattered pressure at nodal point i due to a unit

pressure acting on element j: The vector q0 contains the pressures from the rotating dipoles, evaluated at the element

nodal points. After having solved (30) with respect to ps; the pressure at a point x� is obtained as

pðx�Þ ¼ sT�ps þ q�; ð31Þ

where s� is a vector of influence coefficients, and q� corresponds to q0; but evaluated at x�:
The simplest possible boundary element, i.e. with Nnodes ¼ 1; is found to be sufficient for the present work. The

integrals are evaluated by Gauss–Legendre quadrature, using ten points (Press et al., 1992). The boundary elements are

connected to the same B-spline nodal points as used for the volute source panels in the discrete vortex method, see

Section 2 in Part I. The two uppermost exit pipe panels are connected to each other via an element-covered outer

boundary curve (see Fig. 2), such that the complete boundary is a closed curve, as assumed in Green’s theorem (see (10)

and (15)). Alternatively, to avoid the outer boundary, special ‘thin body’ panels, which constitute closed surfaces in

themselves, could be used (Wu and Wan, 1992; Jeon and Lee, 2000).

The equation system (30) is solved by LU-decomposition. The Hankel functions Hð1Þ
n are evaluated by application of

library routines for the Bessel functions Jn and Yn; using that H
ð1Þ
n ðzÞ ¼ JnðzÞ þ iYnðzÞ: In particular, for real x;

Hð1Þ
n ðxÞ ¼ fsgnðxÞgnþ1JnðjxjÞ þ ifsgnðxÞg

nYnðjxjÞ: ð32Þ

But only n ¼ 1 needs to be considered for the present case.

4. Verification of individual parts in the numerical method

Some relatively simple problems which admit analytical solutions have been considered to validate the individual

parts in the numerical method. The implementation of the BEM into a Fortran 90 computer program was validated by

calculating the scattering of a plane sound wave by a cylinder, and comparing with the analytical results of Morse and

Ingard (1986). Let a denote the radius of the cylinder, and k ¼ o=c0 the wave number. The incoming pressure wave is

travelling in the direction of the positive x-axis, and is given by

p ¼ p0e
ikðx�c0tÞ: ð33Þ

Polar diagrams, showing the absolute value of the surface pressure for various values of ka; are depicted in Figs. 3(a)–
(c). Parts (d)–(f) show the pressures at the distance r ¼ 5a from the center of the cylinder. In all BEM calculations, the

surface was discretized into 100 elements. The accuracy is decreasing with increasing values of ka: But considering that
kr is small in the centrifugal pump problem,1 these examples indicate that the use of constant pressure elements is

sufficient. [See also the discussion in Section 5.2.]

The implementation of the isolated dipole terms was validated by considering the sound pressure generated from a

single discrete vortex element, of length 2 m; having the oscillating line force placed at y ¼ ð0:5 m; 0:0Þ and the control
point at ð�0:5 m; 0:0Þ: The line force of magnitude 1 N m�1 is oscillating with the frequency f ¼ 20 Hz; see Fig. 4(a).
Eq. (19) gives the pressure as

pðx;oÞ ¼
i

4
ð0; 1Þ 
 kH

ð1Þ
1 ðkrÞ

x� ð0:5; 0:0Þ
r

ðPaÞ: ð34Þ

The wavenumber k ¼ 2pf =c0 ¼ 0:08976 m�1; assuming c0 ¼ 1400 m s�1: At x ¼ ð0:5 m; 1:0 mÞ; corresponding to r ¼
1 m; Hð1Þ

1 ðkrÞ ¼ 0:04483þ i7:1788; giving a pressure amplitude of p ¼ 0:1611 Pa: The program gives this value as well,

as seen from Fig. 4(b).

5. Calculations of acoustic pressure in a centrifugal pump

5.1. Description of tongue geometries and location of calculation points

The method described in Sections 2 and 3 will be applied to the pump considered in Section 4 in Part I of the paper.

Three different volute tongues will be considered. They resemble tongues 1–3 in Dong et al. (1997). See Fig. 5 for a

sketch. Tongue 1 has a gap of 7% of the impeller radius, while the gaps of Tongues 2 and 3 are 11% and 18%,

ARTICLE IN PRESS

1 If the distance r is taken as 1.2 � (the impeller diameter DT ) ¼ 300 mm; say, and the largest significant forcing frequency is 700 Hz
(the 6th harmonic for an impeller running at 1000 r:p:m:), then the largest wave number kmaxE2p� 700 Hz=1400 m s�1E3:14 m�1;
giving ðkrÞmaxE0:94:
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(a)

(c)

(e)

(g)

(b)

(d)

(f )

(h)

Fig. 3. Scattering of sound waves from a cylinder as a test case of the BEM. The cylinder has radius a; and its axis is in (0, 0). The
incoming pressure wave is given by p ¼ p0 expðikðx � c0tÞÞ ¼ p0 expðikðr cos y� c0tÞÞ: The diagrams show the absolute pressure jp=p0j
for various values of ka and r: Analytical results are depicted by full lines, and BEM calculations by dots. (a) ka ¼ 1; r ¼ a; (b)
ka ¼ 2; r ¼ a; (c) ka ¼ 5; r ¼ a; (d) ka ¼ 10; r ¼ a; (e) ka ¼ 1; r ¼ 5a; (f) ka ¼ 2; r ¼ 5a; (g) ka ¼ 5; r ¼ 5a; (h) ka ¼ 10; r ¼ 5a:
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respectively. Fig. 5 also indicates the distribution of the boundary element panels, and how many small panels are

concentrated around the impeller tongue.

The acoustic pressure will be calculated at three points, A, B, and C, as illustrated by Fig. 6. Point A is very close to

the impeller and the tongue. If the inlet source is placed at ð0; 0Þ; point A is placed at the position ð�1:07RT ; 0:0Þ: It
corresponds to the placement of the pressure transducer E6 of Chu et al. (1995) and Dong et al. (1997). Point B is placed

at the ‘pump outlet’, on the same height level as the upper part of the casing. Point C is placed 1 m away from point B,

in the downstream direction. For tongue 1, the pressure will also be calculated at a point D, at

1:07RT ðcosð192:4�Þ; sinð192:4�ÞÞ; which corresponds to the location of the pressure transducer E9 of Chu et al. (1995).
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(a)

(b)

Fig. 4. (a) Time history of a point force placed at y ¼ ð0:5 m; 0Þ; (b) Pressure spectrum at x ¼ ð0:5 m; 1:0 mÞ:

(a) (b) (c)

Fig. 5. Three different volute tongues. (a) Tongue 1; (b) Tongue 2; (c) Tongue 3.
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The discrete vortex computer program described in Part I was run to provide J ¼ 212 ¼ 4096 force values in time for

each of 40 control points on each impeller blade, for each of the three volute tongues. The computational parameters

for the acoustic analysis is given in Table 1.

5.2. On the accuracy of the analysis

With 40 elements on the pump casing, the length of the largest element is 0:047 m:With also 40 elements on the exit
channel, the element length there is 0.095 m. With a pump speed of 890 r:p:m: the blade passage frequency fblade is

103:8 Hz: With c0 ¼ 1400 m s�1 the acoustic wavelength of the nth harmonic is l ¼ c0=ðnfbladeÞ ¼ 13:5=n m: The exit
channel is thus covered with 141/n panels per wavelength. A common ‘rule-of-thumb’ in solution of acoustic (and other

wave-type) problems with the finite element method is that the element length should be less than 1
10
th of the minimum

wavelength [e.g. Zienkiewicz (2000)]. Applying this rule here, the present discretization should provide sufficient

accuracy up to the 14th harmonic, although we will, at most, be interested only in the first six. Another

recommendation, related directly to the boundary element method, is that nodal distances should be smaller than the

speed of sound c0 times the simulation time step Dt (Wells and Renaut, 1997). The time step used to generate the blade

force time series is Dt ¼ 3:75� 10�4 s: This gives c0DtE0:52 m which indeed is larger than the largest element.

Returning to the verification test illustrated by Fig. 3 (Section 4), it is noted that the ‘high-frequency case’ of ka ¼ 10

corresponds to an acoustic wavelength of l ¼ 2pa=10: As the cylinder of radius a is covered with 100 panels, the length

of each panel is 2pa=100; that is, exactly 1
10
th of the minimum wavelength considered. The results of Fig. 3 appear to

verify that the mentioned finite element ‘rule-of-thumb’ applies to the boundary element method as well.

The analysis to follow will make of a pressure level PL; defined as

PLðx;oÞ ¼ 20 log10ðjpðx;oÞj=p0Þ ðdBÞ; p0 ¼ 1
2
r0U

2
T : ð35Þ

Fig. 7 illustrates the convergence of (35) at the blade passage frequency fblade; at the two points A and C. The shown

quantity is the error in the pressure level obtained with N elements, relative to the result with (a chosen value of) 100

elements. In contrast to the discussion above, use of just 40 panels on either casing or exit channel may appear too

ARTICLE IN PRESS

Fig. 6. Four locations for pressure calculations.

Table 1

Computational parameters

Number J of sampled force values in (27) 212 ¼ 4096

Number of point forces on each impeller blade 40

Number of elements on the pump casing 40

Number of elements on the exit pipe 40

Number of elements on the outer boundary 24
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coarse. However the error, relative to the 100 panel solution, is below 3% in any case. It is noted that the convergence is

approximately linear in the range 40pNo100: To limit the computational demands, the analysis to follow will be

carried out with 40 elements on both casing and exit channel.

It was verified in Part I that changing the number of dipoles on the impeller blades from 20 to 40 does not

significantly alter velocity and pressure difference across the blades at the most downstream control points. It appears

thus that 40 dipoles per blade gives a satisfactory representation, and the effect of dipoles density on the pressure levels

will not be further analyzed here.

5.3. Results of calculations and comparison with experimental results

Figs. 8(a), (b) shows the pressure spectra at points A and D. The results of the present analysis are shown by the

‘impulses’ while the experimental results of Chu et al. (1995) (their Fig. 10, with reference pressure 1 mPa converted to
1
2
r0U

2
T ) are represented by dots. The ‘thickness’ of the impulses is because not only the frequencies nfblade; n ¼ 1; 2;y; 6;

were analyzed, but also the frequencies corresponding to the nearest four surrounding ‘bins’, in order to verify that the

peaks actually are at nfblade: More precisely, the following frequency composants are shown:

f ¼ nfblade þ mDf ; n ¼ 1; 2;y; 6; m ¼ �2;�1;y; 2; ð36Þ

where Df ¼ 1=JDt: It is a general trend that the numerical pressures are somewhat higher than the experimental ones.
But an overestimation of the pressure by the two-dimensional model is to be expected because, in reality, the pressure

fluctuations will be reduced by leakage flow and three-dimensional effects due to rounding-off of the tongue, etc. The

general characteristics of the frequency spectra are seen to be captured well. The presence of harmonics of the blade

passage frequency is because the pressure signature is harmonic but not pure sinuous. Domination of the second

harmonic 2fblade over the fundamental frequency fblade; as in Fig. 8(b), has also been found experimentally by Chu et al.
(1995), but at a slightly different location, namely at 1:07RT ðcosð198:8�Þ; sinð198:8�ÞÞ; at their pressure transducer E10.
Guelich and Bolleter (1992) show a similar example, and point out that the second harmonic often comes out strongly.

It appears that the balance between the fundamental blade passage frequency and its harmonics depends on the

position of measurement/calculation is a complicated way. As to the experimental system, the pump diffuser, through

which the exit gradually changes from square to circular shape, might have some influence of this balance. So may also

the following piping, although Chu et al. (1995) took care to eliminate reflections therefrom, by connecting the pump

exit and the piping via a spiralled-up rubber hose. These effects are, unfortunately, difficult to represent well in the

present numerical model, but future numerical investigations of the effects of exit (diffusor) geometry might be useful.
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Fig. 7. Convergence of the pressure level PL (as defined by (35)) at the blade passage frequency fblade; at two different points (A and C).
PLN stands for the pressure level with N boundary elements (and PL100 is with 100 elements). When the number of casing (exit) panels

is changed the number of exit (casing) panels is kept constant equal to 40 panels.
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Fig. 9 illustrates the influence of tongue geometry on the pressure levels at the three points A, B, and C. At point C,

the pressure level for fblade decreases approximately 1:4 dB by changing from tongue 1 to 2. The experimental result

(Dong et al., 1997) is 5 dB: The change from tongue 1 to 3 results in a decrease in the calculated pressure level for fblade
by approximately 16 dB; where the experimental value is about 10 dB:
By comparison with Fig. 8 it is seen that the pressure level for tongue 1 at fblade decreases by approximately 6 dB (i.e.

halving of the pressure amplitude) when moving from point D to C. By comparing the power spectra in Chu et al.

(1995) with those in Dong et al. (1997) it is seen that the corresponding experimental pressure level decreases by about

7:5 dB:
The influence of reduced pump speed and reduced flow rate was also considered for the blade passage frequency,

at point C. Reducing the pump speed from 890 to 600 r:p:m:; and keeping the flow rate constant (source strength

kept at 0:675 m2 s�1) resulted in a pressure level reduction of about 15 dB: Reducing the flow rate by changing the

source strength to 0:5 m2 s�1; and keeping the pump speed at 890 r:p:m:; did not imply any significant change in
pressure level.

As discussed in Section 1, the dipole-type flow noise is mainly generated by the oscillating surface pressures which

reach a maximum when the flow from the fluid channel between to impeller blades is blocked by the volute tongue. Fig.

10 depicts the oscillating fluid force at the most downstream control point of one of the impeller blades, for the three

different tongues, and illustrates how the force amplitude decreases by increasing gap.

6. Minimization of flow-induced noise by optimization of the tongue geometry

One of the greatest advantages of the frequency-domain solution (19) of the acoustic pressure is in connection with

minimization of the flow-noise by design optimization, for example by optimizing the tongue geometry. As discussed

earlier, the dominating pressure components are located at the blade passage frequency fblade and its harmonics, 2fblade;
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(a)

(b)

Fig. 8. (a) Pressure spectrum at point D. Comparison between present numerical results (impulses) and the experimental results (dots)

of Chu et al. (1995), corresponding to their point E9; (b) The same at point A, corresponding to point E6 of Chu et al. (1995).
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3fblade;y: The aim may then be to determine the shape of the volute tongue which minimizes the largest frequency

composant of the pressure at a given position x�: A numerical method will be outlined in the following. (A numerical
example has been reported in Langthjem and Olhoff, 2001.)

As described in Part I, the tongue design is described by a B-spline curve,

F ¼ Fðx1ðd1Þ; x2ðd2ÞyÞ ð37Þ
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Fig. 9. Comparison of pressure levels for three different volute tongues. (a) At point A; (b) At point B; (c) At point C.

Fig. 10. Blade force at the most downstream control point, for three different volute tongues.
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say, where x1; x2;y are a few control points which locations are controlled by the scalar design variables d1; d2;y (the

points are to be moved along specified lines). A mathematical optimization problem may be defined as follows:

min
FAfFdg

max
i

jpiðx�;oiÞj; ð38Þ

where fFdg represents the admissible design space. Eq. (38) may be converted into a pure min-problem by defining an

additional design variable, pmax:

min pmax

s:t: ðiÞ pmaxXjp1ðx�;o1Þj; jp2ðx�;o2Þj;y;

ðiiÞ
%
dpdjp %d; j ¼ 1; 2;y :

ð39Þ

Here
%
d and %d are lower and upper bounds on the design variables. The nonlinear constraints (i) may be linearized such

that the optimization problem can be solved iteratively, for example by sequential linear programming. For the

ðk þ 1Þth optimal redesign problem, the linearized constraints (i) take the form

pmaxXjpkþ1
i jEjpk

i j þ
X

j

qjpk
i j

qdj

Ddj ; i ¼ 1; 2;y : ð40Þ

The frequency-domain solution (19) provides a basis for efficient evaluation of the dominating noise components. The

fluid forces fnðynðtÞ; tÞ are also affected by the design changes, but numerical tests have shown that the influence is small
for ‘moderate’ design changes. By significant remodelling of the tongue shape, the fluid forces have to be reevaluated

during the design iterations.

Differentiation of p� ¼ pðx�;oÞ (Eq. (31)) with respect to the design parameter dj gives

qp�
qdj

¼
qsT�
qdj

ps þ
qps

qdj

sT�; ð41Þ

using that qq�=qdi ¼ 0 as q� is held constant (in accordance with the discussion above). The vector qps=qdj can be

obtained by differentiation of (30) as

qps

qdj

¼
1

2
I� S0

� ��1 qS0
qdj

ps; ð42Þ

using that qq0=qdi ¼ 0:

7. Conclusion

This paper has described a two-dimensional numerical method for estimating the acoustic pressure fluctuations in a

centrifugal pump, due to the unsteady surface forces which act as acoustic dipoles. In the example considered, the

estimates of the strengths of the dipoles rely on the discrete vortex method (DVM). DVM gives the velocity field,

whereafter the pressure on the blades is evaluated by applying the unsteady Bernoulli equation. The unsteady pressure

on the volute also acts as distributed dipole sources whose strengths are determined by applying the BEM.

The use of DVM is just one possible method of estimating the dipole strengths. Alternatively, commercial or ‘in-

house’ computational fluid dynamics (CFD) codes (based on finite or boundary elements, or finite difference) may be

used to provide this data.

Solution (27) to the inhomogeneous wave equation (4) is determined directly in the frequency domain. Similar

solutions are given by Lockard (2000) and Guo (2000). Both papers consider problems with a single moving body in

otherwise unbounded space, such that the solutions can be conveniently expressed in moving coordinate systems. The

rotor–stator interaction problem of the present paper is more complicated, and it is of little help to consider a

coordinate system moving with the impeller, as the volute then will be rotating in that system. Thus, the positions of the

dipoles need to be updated at every time step, as expressed by (27). This equation may, we hope, also be useful for

estimating noise generation in other types of machinery with rotor–stator interaction.

The present numerical procedure has been checked by comparing the numerical results with available experimental

data. Better agreement between theory and experiment than found here has been reported for both unducted and

ducted air-conveying centrifugal fans (Jeon and Lee, 1999, 2000). But the water-conveying centrifugal pump may be a

‘harder’ problem, for the following reasons. The sound (compression) waves move much faster in water than in air

(1400 versus 340 m s�1). Furthermore, the attenuation of the sound waves is weaker in water than in air, as the

kinematic viscosity is smaller (1:00� 10�6 versus 15:1� 10�6 m2 s�1; at 20�C). Disturbances and reflections may thus
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interfere stronger in a pump, making both experimental and numerical analyses more difficult than by a fan. Some

neglected details in the numerical model, such as reflections from the impeller hub, may then have influence on the

results. This could be included in future studies. A better representation of the impeller blades, by distributed forces

(dipoles) rather than concentrated (lumped) ones, can also be suggested as a point of improvement.

In conclusion, although a better agreement between theory and experiment could be wished for, we feel that the

presented results support the initial assumptions that:

(i) the sound generated in the centrifugal pump is determined mainly by the unsteady surface forces;

(ii) the discrete vortex method can provide a sufficiently accurate estimate of these forces;

(iii) a two-dimensional analysis is capable of capturing the basic features of acoustic pressure fluctuations in a flat,

‘two-dimensional’ laboratory centrifugal pump.
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Appendix A. Extension to three dimensions

In changing the solution (19) to one valid in three dimensions we return to the general solution (10). The three-

dimensional Green’s function is, in terms of its Fourier transform, given by (Howe, 1998)

Gðx; y; t; tÞ ¼
1

8p2c20

Z
o

eikrðtÞ

rðtÞ
e�ioteiot do: ðA:1Þ

The forces fn are now to be considered as point forces, not as line forces. They are obtained as pressure difference Dpn

(at blade control point n) times the area An of impeller blade panel n: The three-dimensional version of the frequency-
domain solution (19) takes the form

cðxÞpðx;oÞ ¼
1

4p

XNf

n¼1

Z
t

fnðynðtÞ; tÞ 

q
qy

eikrnðtÞ

rnðtÞ

� �
eiot dt

þ
1

4p

Z
S

pðys;oÞ
q
qn

eikrS

rS

� �
dS; ðA:2Þ

where the result used to obtain (20) also has been implemented. The derivatives of the function eikr=r are given by

q
qya

eikrn

rn

� �
¼

1

r3n
�
ik

r2n

� �
ðxa � yanÞ eikrn ;

q
qn

eikrS

rS

� �
¼

1

r3S
�
ik

r2S

� �
ðx� ySÞ 
 ne

ikrS : ðA:3Þ
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